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SUMMARY 

Presented in this paper is a new method for the prediction of unsteady, incompressible separated flow over 
a two-dimensional aerofoil. The algorithm was developed from an existing unsteady potential flow model' 
and makes use of an inviscid formulation for the flow field. The aerofoil is represented by vortex panels 
of linearly varying strength which are piecewise continuous at the corners. Discrete vortices with finite 
cores are used to model the separating shear layers. 

Following a brief summary of unsteady separation modelling, the theoretical framework is presented 
and the subsequent numerical implementation is discussed in detail. 

Results are given for flows which tend asymptotically to the steady state and conclusions are drawn 
regarding the usefulness of the method. 
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INTRODUCTION 

The study of phenomena associated with unsteady flow around aerofoils has been of consuming 
interest to aerodynamicists for many years. An understanding of such flows is important, for 
instance, in the design of helicopter rotors. In this case during forward flight transonic effects 
are important for the half cycle of advancing blade motion, and dynamic stall is a predominant 
feature while the blade is retreating. The progress which has been made,2 both experimentally 
and computationally, in these areas is also of benefit to those considering the performance of 
turbomachinery and wind turbines etc. 

The discrete vortex method has been applied to unsteady aerofoil problems for some time. 
G e i ~ i n g , ~  Basu and Hancock4 and the present authors' have used the method to predict unsteady, 
incompressible inviscid flows, whereas Ham,5 Baudu et aL6 and Ono et aL7 have had some success 
in modelling unsteady, incompressible, separated flows, Clements and Maull' provided an early 
history of the method, and made subsequent use of it to model vortex shedding from a square 
based body. Other more recent uses of the method have been the asymptotically steady analyses 
of Sarpkaya' and Katz," who considered a flat plate and a thin cambered aerofoil, respectively. 
These latter efforts highlight the attempts that have been made to reproduce what are essentially 
viscous phenomena by the use of inviscid algorithms. All these incorporate the assumption that 
the flow is irrotational over the entire region except at the body and its wake elements. In such 
schemes, the vorticity shed from the body is usually derived from velocities sampled at  the edges 
of the shear layer, an approach validated by the experiments of Fage and Johansen" and by 
the analysis of boundary layer separation on aerofoils by Sears.'2.' 
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Recently the detailed mathematical and numerical techniques associated with discrete vortex 
methods were reviewed by Leonard.I4 Application of the point vortex, vortex blob and newer 
contour dynamics methods to two-dimensional vortical flows were discussed as well as develop- 
ments in three-dimensional vortex methods. Leonard was subsequently part of a team which 
incorporated the vortex blob, or core, method into a new numerical scheme for the prediction of 
separated flows.' 

Three versions of the original algorithm were developed; a pure vortex method, a method 
with added quasi-steady integral boundary layer calculations, and a method which incorporated 
a truly unsteady implicit finite difference boundary layer scheme. Some valuable and interesting 
results were presented for a range of bluff body, aerofoil and tilt rotor problems. Further 
development is, however, needed, especially to improve on the drag predictions. 

Presented in this paper are the first results from a new method to predict the unsteady flow 
over an aerofoil undergoing upper surface separation. The method is of the inviscid type and 
uses vortices with finite cores. Reliance is not placed on the explicit evaluation of the shear velo- 
cities for the determination of the shed vorticity, which is, rather, one of the variables in a 'Kutta' 
condition, The method was developed from an existing unsteady potential flow model,' and the 
location of the separation point is a necessary input into the algorithm. 

THEORETICAL DESCRIPTION O F  MODEL 

The model at time t,, is set up as shown in Figure 1. The aerofoil is represented by N panels 
from upper to lower trailing-edge over which there is placed a vortex sheet of linearly varying 
strength that is piecewise continuous at the panel corner points. With upper surface separation 
present, the distribution of vorticity within the separated zone is constrained to take starting 
and finishing values of zero. The circulation around the aerofoil is r,, where I-, = [yds, and 
the vorticity shed at previous times is represented by discrete vortices except in the region close 
to the upper surface separation point, where it takes the form of N ,  - 1 constant strength vortex 
panels. Two additional constant strength vortex panels appear at time t , ,  one at each separation 

0 CONTROL POINT 
$ DISCRETE VORTEX 

\ 

r, 

Figure 1. Unsteady separation model at time t, 
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point, to account for the latest change in aerofoil circulation, in accordance with Kelvin’s 
theorem.I6 The strengths of the emanating sheets are determined by making use of Helmoltz’s 
theoremI7 of continuity of vorticity which, when applied with the former theorem, results in the 
following condition: 

A1 Y F  + AYN+ I = r m -  1 - r m ,  (1) 
where A,  and A are the lengths of the respective panels. 

In order to obtain a solution for the unknown bound vortex sheet strengths, the boundary 
condition of zero flow normal to the surface is applied at the mid-points (control points) of the 
aerofoil panels resulting in the following system of equations. 

N N P  N” 
U*fi,+ 1 A i j y j + A i l ~ ~ + A i i v + l ~ N + l  + 1 Aigypg+ 1 G i g K g = O ,  i =  1,2, ..., N .  (2) 

j = 2  g = 2  9 =  1 

The second, third and fourth terms in equation (2) are the normal induced velocities at the 
ith control point due to the bound vortex sheet and the two separating panels at time t,, 
respectively. These terms contain the unknown vortex strengths, whereas the first, fifth and sixth 
terms can be completely evaluated and are the normal induced velocities at the ith control point 
due to the free stream, the remaining wake panels and all wake vortices, respectively. The theoretical 
details associated with equations (1) and (2) are considered in Reference 18. 

The expressions ( I )  and (2) amount to a system of N + 1 simultaneous equations that are linear 
in the N + 1 unknown y values. However, as A1 and A are also unknown a solution can be obtained 
only by iteration from initial values assigned to both of these variables. It follows that the iterative 
scheme must incorporate some means of assigning new values to A l  and A and this is achieved 
by considering the Bernoulli equation as it applies to vortex sheets. 

The dynamical boundary conditions for vortex sheets have been examined by Geising” and 
a similar approach is used here. If we assume that a separated wake, as illustrated in Figure 2, 
gives rise to two isolated regions R ,  and R ,  with total heads h,  and h,, respectively, then the 
Bernoulli equation applied across each separation point yields the following results (see 
Figure 2); 

Upper surface separation point 

, a  a 
-- ’a = - (+a. - +a) + Ah = - (A+J + Ah, 
2 at at 

=3 with pa = pa. 

Figure 2. Inviscid formulation 
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Trailing-edge separation point 

Substracting (4) from (3)  we get 

In order to simplify the right hand side of equation (5) we acknowledge that 

#a‘- #b’ + #a-  #ar  + #b- # a  + #b’- #b = O  

=? #a‘- #b’ + # b -  #a = - A # N +  1 .  

The left hand side represents the circulation around the aerofoil, r,, and therefore 

Equation (6), which is the unsteady ‘Kutta’ condition, can be derived by considering the 
boundary layer, which in this case is infinitely thin, at the separation points as was shown by 

This is an example of the link between the viscous nature and inviscid dynamics of 
separation as the boundary layer thickness diminishes. 

By examining equations (l), (3), (4) and (6) it will become apparent that the relevant iterative 
scheme for A, and 1 is 

Within the iterative cycle, the trailing edge panel is aligned with the local stream direction 
but, for numerical reasons which will be discussed later, this is not the case for the upper surface 
panels. 

Once a converged solution has been obtained, the unsteady pressure coefficient is determined 
from Bernoulli’s equation. In region R ,  (see Figure 2) this is 

c =I----- Y 2  2 ad, 
u2 u2 a t ‘  

In region R ,  the equation becomes 

1 
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i.e. 

where g5c = continuous potential in region R,. 
The potential function is approximated by integrating the velocity field from upstream of the 

aerofoil to the leading edge and then around the surface, proceeding through the upper surface 
separation point in a continuous manner. The term d 4 / d t  is taken as (& - l)/At, and the 
loads are determined by integrating the pressure distribution. 

Once a complete solution has been obtained at time t,, the model is then set up for time 
tm+ Existing vortices are convected to their new positions by calculating the velocities of their 
centres and using the first order Euler scheme: 

r v m  + 1 = r v m  + q v m ( t m  + 1 - tm). 
The same scheme as above is used to convect the extra trailing-edge panel to its new position 
as a discrete vortex. The upper surface panels, however, are treated differently, as detailed in the 
next section. 

COMPUTATIONAL DETAILS 

Upper surface separation 

As illustrated in Figure 1 the separation point is located on one of the aerofoil panels between 
two corner points, as this positioning is essential if a solution is to be obtained. Restrictions 
which follow from this are: 

(i) The separation point must be kept away from the corner points, otherwise there is one less 

(ii) The separation point must be kept away from the control points, otherwise infinite velocity 

Considering (i) and (ii), the best location for the separation point would be either at a distance 
of one quarter or three quarters of the panel length from one of the corner points; however 
numerical experiments have shown that the latter of these positions yields the most stable results. 
If separation occurs on the first panel a fully attached potential flow solution is obtained via 
an existing model.’ 

At the end of each time step the vorticity emanating from the upper surface does not immediately 
take the form of a discrete vortex but remains as a sheet for a number of time steps. The reason 
for this is illustrated in Figure 3,  where the velocity components of a constant strength vortex 
panel and an equivalent point vortex, placed at the centre of the panel are plotted at various 
stations. From this Figure it may be seen that the discrete vortex approximation to a vortex 
sheet is very poor close to the sheet which leads, in this case, to an erroneous solution in the 
wake immediately downstream of the separation point. In arriving at a method of convecting 
this vorticity various schemes were tried: 

(i) The velocity, 4, at each of the panel ends (taken as the mean ofthe control point velocities on 
either side) was calculated and hence the new length, AneW=qAt  was computed. The 
vorticity was adjusted to maintain the overall panel circulation, i.e. 

unknown and a solution cannot be obtained. 

components arise and the solution is meaningless. 
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CONSTANT VORTlClTY y 

- 5 I+ h l  

a = 0.01 a =  0.25 a = l  

- VELOCITY DUE TO VORTEX PANEL 
------ VELOCITY DUE TO DISCRETE VORTEX 

Figure 3. Comparison between the local velocity fields induced by a vortex panel and an equivalent discrete vortex 

(ii) Panels were adjusted so that the vorticity strengths were the same as that at the separation 
point, i.e. ypz = yp3 = yp4 = ... = ys  The length were then computed from 

(YSA.)*ld A,,, = ---. 
Ysnew 

(iii) Panels were convected as a whole, i.e. A,,, = hold, yne, = yold. 

Scheme (i) proved to be too unstable when the velocity field around the separation point 
became erratic, leading to massive fluctuations in length and vorticity. Scheme (ii) suffered from 
similar stability problems due to the fact that large fluctuations in ys  were propagated immediately 
throughout the near wake. Greatest stability was achieved with scheme (iii) and this is due to 
the fact that any fluctuations in ys  only propagate one panel at a time, thereby avoiding massive 
instantaneous changes in the local velocity field. 

Unlike the trailing-edge panel, geometric restrictions have been introduced to control the 
separated upper surface panels. The angle between the first panel and the local surface tangent, 
8,, is fixed and the angular deflection of each subsequent panel has an upper limit of 

Once the panels have been convected as described above, the outermost panel becomes a 
discrete vortex, except at the start when the wake contains fewer than N ,  panels. 

Discrete vortex modelling 

Initially point vortices were used to represent the shear layers. However, it was soon realized 
that stable solutions would not be obtained, owing to the singular nature of the flow in the 
vicinity of such vortices along with their proximity to the aerofoil surface. To overcome this 
problem, and obtain acceptable solutions, vortices with finite cores have been used. The resulting 
vorticity field can be written as follows: 
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where the function yv describes the distribution of vorticity within the core and satisfies the 
normalizing condition, f: y,rdr = 1. The velocity field is obtained by inserting equation (7) 
into the Biot-Savart equation to obtainI5 

where q is a function which makes the velocity regular throughout the core and is defined by 
the equation 

d 
dr 
- (?q) = ry,. 

Three types of core have been used (g is the core radius): 

1 1 " K P  
ar  2ng=1 (r 

(i) yy  = -, q = - c 2, inside core, i.e. constant velocity. 

2 1 " K  
(iii) yv = az' q = 21rgzl 2 r n ,  inside core, i.e. constant vorticity. 

All of the results presented herein have been obtained using core (iii). 

At, + At2 = A t  

'" A ? 2  1.-INITIAL VORTEX WSlTlON 
2:ILLEGAL VORTEX POSITION 

3:FINAL VORTEX POSITION 
ACROSS SURFACE 

( a  1, REFL ECTlON FROM SURFACE 

1 

1dNITIAL VORTEX POSITION 
ZrlLLEGAL VORTEX WSITION 

3.-FINAL VORTEX POSITION 
WITHIN BOUNDARY 

( b.1 RELOCATION AT BOUNDARY 

Figure 4. Restrictions on vortex motion 
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Once the vortices have been released into the stream they convect according to the induced 
velocities at their centres. It has been found necessary, however, to impose restrictions whenever 
unacceptable motions occur. These motions are due to an inappropriate time step for vortices 
close to the surface of the aerofoil. If left unhindered these may cross over the aerofoil surface. 
Initially such vortices were eliminated from the computation, but this produced unacceptable 
peaks in circulation and lift and so a different scheme was developed whereby they were reflected 
from the surface. This was an improvement but did not stop the problem of some vortices settling 
very near to the surface, and hence not convecting downstream. 

This problem has been resolved by further ensuring that all vortices are kept outwith a given 
distance from the surface. At present this distance has been taken to be equal to the core radius, 
LT, and any vortex found within this region is relocated at the limiting boundary along the normal 
to the surface. Vortices that are close to the separation point very often do not reach this boundary 
for a few time steps and in such cases the temporary limiting distance used is the maximum 
normal distance to the surface yet achieved. Figure 4 illustrates these restrictions. 

The large amount of time expended when vortex methods are used in computations usually 
dictates that a limit be placed on the total number of vortices contained in the wake. This is 
achieved by suitable coalescence. Vortices may be coalesced for other computational reasons, 
such as the prevention of wake disruptiong caused by vortices of opposite sign. In the model 
described herein, two methods of coalescing vortices were used, one for each of two regions: 

(i) Within a distance, Do, of the aerofoil surface, vortices of opposite sign which come closer 
than a certain distance, D,, are coalesced into a single equivalent vortex. The total circulation 
is conserved but not the first moment of vorticity as this would result in the combined vortex 
being far removed from the immediate vicinity. Instead, the location is calculated as if both 
vortices wereofthesamesign,i.e.z,=(/K,/z, +/Kz/zz) / ( lKl /  +lK,l)wherez,is thenew 
position and z1 and z, are the respective positions of the two vortices. 

(ii) Outwith a distance, Do, of the aerofoil surface any two vortices are coalesced if an error 
criterion is satisfied. The total circulation and the first moment of vorticity are conserved in 
the combination, which is carried out only if the error is less than a certain value, e,. The 
expression used to calculate this error is similar to that used in Reference 15: 1 KIK, 1 Iz1 - Z z l Z  

K, + K, Atd:  ' d :  ' ev 

The two methods are needed for the following reasons: in the region close to the aerofoil it is 
desirable to coalesce vortices of opposite sign, and this would not be a likely result of implementing 
method (ii) due to the error criterion; in this same region it is undesirable that vortices of the 
same sign be coalesced as this leads to stronger vortices and hence larger velocity gradients on 
the surface which can produce unstable results; in the region far from the surface the method 
should automatically coalesce vortices which are further apart than those in the close-in region, 
and method (ii) does this. It should be noted that the most recent N ,  vortices to be shed are not 
involved in coalescence, so that the shear layer can initially remain relatively undisturbed. 

Miscellaneous points 

All of the results presented in the next section were obtained using a thirty panel representation 
of the aerofoil, as this number has been found to be satisfactory.' To calculate the velocity 
potential, a reference point is located three chord lengths upstream from the leading-edge and 
the change in potential calculated across each of thirty equal length panels which form a line 
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between both points. The choice of time step was a balance between the cost of the computation, 
the flow resolution required and the sensitivity of the solution to the length A, K A ~ .  For all 
cases here, At U/c = 0.05. 

Four iterations are carried out per time step, as this number was found to be suficient for 
acceptable convergence. The numerical parameters that were assigned the same value in all of 
the tests were N ,  = 4, N ,  = 20, 8, = lo", o = 0.05, Do = 1, D, = 0.1, e ,  = 5 x Others are 
mentioned in the next section. 

RESULTS 

Figure 5 illustrates the results obtained following a step change in incidence from 0-18.25" for 
the NASA GA(W)-l aerofoil. For this test 68, = 0" and x,/c = 0.575. From Figure 5(a) it may 
be seen that the wake at tU /c  = 15 consists of two well-defined shear layers which come to- 
gether a short distance downstream followed by a thin region which extends far downstream 
while gradually opening out. This representation compares well with other wake models,20'21 and 
there is no need to make initial assumptions concerning the wake shape. Figures 5(b) and 5(c) 
show the time dependent behaviour of the normal force and quarter chord moment. Although 
the initial response will not be physically accurate as the fixed separation point does not correctly 
model the true initial conditions, the approach to a steady value can be observed. The build-up 
in pressure near the leading-edge to the steady state is particularly evident in Figure 5(d) and 
the settled chordwise pressure distribution shown in Figure 5(e), compares very favourably with 
the experimental dataz2 (Re = 6.3 x lo6, M = 0.15). An isometric projection of the pressure-time 
history is presented in Figure 5(f) and illustrates well he constant pressure region downstream 
of the separation point. 

A step change from 0-20.05" was applied to the same aerofoil and Figure 6 illustrates the 
results obtained with A8, = o" and x, /c  = 0.475. The shear layers in Figure 6(a) enclose a larger 
near wake region than that which was formed in the previous case although the thin far wake 
is similar. The normal force and quarter chord moment approach a steady value in Figures 6(b) 
and 6(c), and the build up in leading-edge pressure in Figure 6(d) is more marked than that in 
Figure 5(d). The good agreement of the settled solution with the measurements is evident in 
Figure 6(e). 

Figure 6(f) illustrates the pressure-time history and provides a good view of the build-up to 
the steady state as well as the constant pressure region. 

Figure 7 illustrates results obtained from a test where separation occurs near to the leading-edge 
after a step change in incidence from 0-21.14", again using the same aerofoil. In this case AOp = 3" 
and x,/c = 0.125. From Figure 7(a) it can be seen that the shear layer emanating from the upper 
surface starts to break up soon after it is shed and this is due to the more severe flow-field 
perturbations which accompany increasing amounts of separation. The result of this is that the 
near wake is wide and the far wake is no longer thin, exhibiting a periodic structure composed 
of alternately signed vortex clusters. The initial response of the normal force and quarter chord 
moment in Figures 7(b) and 7(c) corresponds to the passage of the first vortex cluster, although 
the forward movement of the separation point has not been modelled. The moment exhibits 
more of the oscillatory nature of the flow whereas the normal force is not unduly perturbed in 
its approach to a steady value. Owing to massive upper surface separation the behaviour of the 
leading-edge pressure, illustrated in Figure 7(d), is markedly different from the previous cases, 
and the computed pressure distribution compares very favourably, Figure 7(e), with the measured 
data. The wake pressure is not always constant, owing to the passage of vortices over the aerofoil; 
however, for comparison purposes a computed pressure distribution has been chosen, near 



586 M. VEZZA AND R. A. McD. GALBRAITH 

+ 
(a) Wake at tU/c = 15 

A clockwise circulation + anticlockwise circulation 

'1 
04 I 

0 S 10 15 
tu/c 

(b) Cn vs tU/c 

- .JB 

(c) Cm, vs tUjc 

-7 

-2i 
04 

0 5 10 15 

tU/C 
(d) Cp vs tU/c at x/c = 0.025 

__ computed 
E. experimeqt 

cp -s -8h 
-2 

x/c 

(e) Comparison between computed and steady 
experimental Cp 

(f) Pressure-time history 

Figure 5. Results obtained following a step change in incidence from 0-  18.25" using the GA(W)-1 aerofoil 
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Figure 6. Results obtained following a step change in incidence from 0--+20.05" using the GA(W)-1 aerofoil 
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Figure 7. Results obtained following a step change in incidence from 0-+21.14" using the GA(W)-1 aerofoil 
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Figure 8. Results obtained following a step change in incidence from 0 -+ 18.60" using the NACA 23012 aerofoil 
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tU /c  = 20, that exhibits the closest approximation to a uniform wake pressure. The pressure 
time history is shown in Figure 7(f), which illustrates well the vortex shedding and subsequent 
passage over the aerofoil. 

The final test case, illustrated in Figure 8, is that of a NACA 23012 aerofoil which undergoes a 
step change in incidence form 0-18.60”, with At?* = 0” and x,/c = 0.2. Because of the lower angle of 
attack the wake in Figure 8(a) is not as wide as that in Figure 7(a), although the far wake broadens 
out more in this case than in either of the two cases of separation nearer the trailing edge. The shear 
layers break up soon after being shed and transform into alternately signed clusters which are 
convected downstream. The normal force and quarter chord moment can be seen to approach a 
steady value in Figures 8(b) and 8(c) although the moment exhibits more of the unsteady 
fluctuations, a feature which can be discerned from all of the results presented herein. The leading- 
edge pressure in Figure 8(d) builds up to a final value in a fairly short time and the good correlation 
between the two pressure distributions can be seen from Figure 8(e). For comparison purposes in 
this case, a ‘steady’ calculationz1 was performed at the same angle of incidence and separation 
point position as those used for the ‘unsteady’ calculation. From the three-dimensional projection 
in Figure 8(f) it can be seen that after the passing of the initial vortex the wake pressure remains 
relatively constant close to the separation point but exhibits increasing amounts of unsteadiness 
nearer to the trailing-edge. This would suggest the presence of vortex clusters close to the aerofoil in 
this region. 

CONCLUSIONS 

A new method for the prediction of unsteady, incompressible, separated flow around an arbitrary 
aerofoil has been developed. An inviscid formulation is used for the flow field and the shear layers 
are represented by discrete vortices with finite cores. The first results of asymptotically steady 
separated flow about an aerofoil with a fixed separation point are most encouraging. The 
algorithm is thus regarded as being very useful and future work will be concerned with the 
incorporation of a moving separation point into the model to enable a proper investigation of 
aerofoil dynamic stall during ramp and oscillatory motions to be carried out. 

SYMBOL GLOSSARY 

total influence coefficient of y j  
normal lift coefficient 
quarter chord moment coefficient 
pressure coefficient 
aerofoil chord 
distance parameters associated with coalescence 
distances associated with error estimation 
error estimate of coalescence 
discrete vortex coefficient 
total head 
discrete vortex strength 
aerofoil panel length 
number of panels 
number of discrete vortices 
number of recently shed vortices not involved in coalescence 
unit normal vector 
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pressure 
velocity vector 
regions with different total head 
position vector 
distance along panel 
time 
free-stream velocity 
co-ordinates of points on surface 
complex number 

Greek symbols 

circulation 
vorticity strength 
wake panel lengths 
regulating function associated with vortex core 
wake panel angles 
density 
radius of vortex core 
velocity potential 
vorticity 

Subscripts 

a, a’, b, b‘ 
i , j  index of aerofoil panels 
m time-step counter 
n normal direction 
P index of wake panels 
S conditions at separation point 
V discrete vortex 

positions either side of vortex sheet 
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